Math 304 (Spring 2015) - Homework 6

Problem 1.

Find the transition matrix from the basis $\left\{u_{1}=\binom{1}{1}, u_{2}=\binom{1}{-1}\right\}$ to the standard basis $\left\{e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right\}$

Solution: The transition matrix is

$$
U=\left(\begin{array}{cc}
\mid & \mid \\
u_{1} & u_{2} \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Problem 2.

Let \mathbb{P}_{2} be the vector space of polynomials with degree ≤ 2. We know that $\left\{1, x,(x+1)^{2}\right\}$ is a basis of \mathbb{P}_{2}. Find the coordinate vector of the polynomials $p(x)=x^{2}-1$ with respect to the basis $\left\{1, x,(x+1)^{2}\right\}$.

Solution:

$$
x^{2}-1=a \cdot 1+b \cdot x+c \cdot(x+1)^{2}
$$

Solve for a, b and c.

$$
\left\{\begin{array}{l}
a+c=-1 \\
b+2 c=0 \\
c=1
\end{array}\right.
$$

So the coordinate vector is

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-2 \\
1
\end{array}\right)
$$

Problem 3.

Given the matrix

$$
A=\left(\begin{array}{rrrr}
-3 & 1 & 3 & 4 \\
1 & 2 & -1 & -2 \\
-3 & 8 & 4 & 2
\end{array}\right)
$$

(a) Find a basis of the row space of A and use it to determine the rank of A.
(b) Find a basis of the column space of A.
(c) Find a basis of the null space of A.

Solution:

(a) Row echelon form of A is

$$
\left(\begin{array}{rrrr}
1 & 2 & -1 & -2 \\
0 & 1 & 0 & -2 / 7 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

So

$$
\begin{gathered}
u_{1}=(1,2,-1,-2) \\
u_{2}=(0,1,0,-2 / 7) \\
u_{1}=(0,0,1,0)
\end{gathered}
$$

form a basis of the row space of A. So the rank of A is 3 .
(b) By looking at the pivotal entries of the echelon form of A, we see that

$$
v_{1}=\left(\begin{array}{r}
-3 \\
1 \\
-3
\end{array}\right), v_{2}=\left(\begin{array}{l}
1 \\
2 \\
8
\end{array}\right), v_{3}=\left(\begin{array}{r}
3 \\
-1 \\
4
\end{array}\right)
$$

form a basis of the column space of A.
(c) All solutions are of the form

$$
s\left(\begin{array}{c}
10 / 7 \\
2 / 7 \\
0 \\
1
\end{array}\right)
$$

So

$$
w=\left(\begin{array}{c}
10 / 7 \\
2 / 7 \\
0 \\
1
\end{array}\right)
$$

forms a basis of $\operatorname{ker} A$.

Problem 4.

Determine whether the following mappings are linear transformations.
(a) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
L\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{a+b}{c}
$$

(b) $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
L\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\binom{a^{2}+b^{2}}{c}
$$

(c) Let \mathbb{P}_{3} be the vector space of all polynomials with degree ≤ 3. The mapping $L: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ by

$$
L(p(x))=p^{\prime}(x)
$$

where $p^{\prime}(x)$ is the derivative of $p(x)$.
(d) $L: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ by

$$
L(p(x))=x \cdot p(x)
$$

(e) $L: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ by

$$
L(p(x))=p(x)+x^{2}
$$

Solution: For this question, I will skip the details.
(a) Yes.
(b) No.
(c) Yes.
(d) Yes.
(e) No.

Problem 5.

Find the matrix representations of the following linear transformations.
(a) Let L be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} by

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 x_{1}-x_{2}-x_{3} \\
2 x_{2}-x_{1}-x_{3} \\
2 x_{3}-x_{1}-x_{2}
\end{array}\right)
$$

Find the standard matrix representation of L.
(b) The vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

form a basis of \mathbb{R}^{3}. Let L be the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} defined by

$$
L\binom{x_{1}}{x_{2}}=x_{1} v_{1}+\left(x_{2}+x_{1}\right) v_{2}+\left(x_{1}-x_{2}\right) v_{3}
$$

Find the matrix representation of L with respect to the bases $\left\{e_{1}, e_{2}\right\}$ (the standard basis of \mathbb{R}^{2}) and $\left\{v_{1}, v_{2}, v_{3}\right\}$.
(c) The vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

form a basis of \mathbb{R}^{3}. Let L be the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} defined by

$$
L\binom{x_{1}}{x_{2}}=x_{1} v_{1}+\left(x_{2}+x_{1}\right) v_{2}+\left(x_{1}-x_{2}\right) v_{3}
$$

Find the matrix representation of L with respect to the standard bases.

Solution:

(a)

$$
L\left(e_{1}\right)=\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right), L\left(e_{2}\right)=\left(\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right), L\left(e_{3}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right)
$$

The standard matrix representation is

$$
\left(\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

(b)

$$
L\left(e_{1}\right)=v_{1}+v_{2}+v_{3}
$$

so its coordinate vector with respect to $\left\{v_{1}, v_{2}, v_{3}\right\}$ is

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Similarly, the coordinate vector of $L\left(e_{2}\right)$ is

$$
\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

So the matrix representation is

$$
\left(\begin{array}{rr}
1 & 0 \\
1 & 1 \\
1 & -1
\end{array}\right)
$$

(c)

$$
L\left(e_{1}\right)=v_{1}+v_{2}+v_{3}=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)
$$

so its coordinate vector with respect to the standard basis $\left\{e_{1}, e_{2}, v_{3}\right\}$ of \mathbb{R}^{3} is

$$
\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)
$$

Similarly, the coordinate vector of $L\left(e_{2}\right)$ is

$$
\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) .
$$

So the matrix representation is

$$
\left(\begin{array}{rr}
2 & 1 \\
2 & -1 \\
2 & 0
\end{array}\right)
$$

